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INLET REYNOLDS NUMBER AND TEMPERATURE EFFECTS ON

THE STEADY-STATE PERFORMANCE OF A

TFE731-2TURBOFAN ENGINE

by George A. Bobula and Roy A. Lottig

Lewis Research Center and
U. S. Army Air Mobility R&D Laboratory

SUMMARY

An experimental investigation to determine the effects of engine inlet Reynolds num-
ber and temperature on a moderately high bypass ratio turbofan engine, the TFE731-2,
was conducted at the Lewis Research Center. Tests were conducted at a constant Mach
number of 0. 8, engine inlet Reynolds number indices of 0. 75, 0. 50, 0. 25, and 0.12,
and inlet temperatures of 289 and 244 K.

Decreased engine inlet Reynolds number resulted in decreased corrected engine
airflows and compression efficiencies, and increased bypass ratio, compression system
temperature ratio, interturbine temperature ratio, turbine exit temperature ratio, and
corrected fuel flow. Decreased engine inlet temperature resulted in decreased cor-
rected engine airflow, fan hub efficiency and corrected fuel flow, and increased com-
pression temperature ratio, turbine exit temperature ratio, and interturbine tempera-
ture ratio. Speed match was affected by Reynolds number only at the 244 K inlet
temperature where a reversal in trend occurred.

INTRODUCTION

An experimental investigation was performed to determine the effects of engine inlet
Reynolds number and temperature on the steady-state performance of a TFE731-2 tur-
bofan engine. Variations of engine inlet Reynolds number and temperature which occur
with changes in aircraft flight condition affect gas turbine engine performance. Such
effects on turbojet and turbofan engines are documented, for example, in references 1
to 9. The literature concerned with these effects on turbofan engines is more limited,



however. An investigation into the engine inlet Reynolds number and temperature ef-
fects on the TFE731-2 engine, which has several unique design features, can therefore
contribute to the understanding of turbofan engine performance.

The engine reported herein is a moderately high bypass ratio, two spool gas turbine
with a geared front fan. It has an axial low pressure compressor, a centrifugal high
pressure compressor, and a reverse flow annular combustor.

Tests were performed at a simulated Mach number of 0.8, over a range of engine
inlet Reynolds number index from 0.12 to 0. 75, and at engine inlet temperatures of
289 and 244 K (520° and 440° R). Reynolds number index is defined as the ratio of the
local Reynolds number at the flight condition to that at standard sea-level conditions.

APPARATUS AND PROCEDURE

Engine

The AiResearch Model TFE731-2 (serial number 7306 Build No. 2) turbofan engine
tested in this program is a 15 600-newton (3500-lb) thrust, moderately high bypass
ratio, two spool gas turbine with a geared front fan. The 0. 556 gear reduction design
also results in the fan rotating counter to the low pressure compressor. The single-
stage fan and four-stage axial low pressure compressor are driven by a three-stage
axial turbine. The single-stage centrifugal high pressure compressor discharges into a
reverse flow, annular combustor. The high spool is driven by a single-stage axial tur-
bine which also drives the accessory gearbox. Fan and core flows discharge through

2 2coannular separated flow nozzles of areas 1262 and 617 cm (195. 6 and 95. 6 in. ), re-
spectively. Figure l(a) is a schematic diagram depicting the airflow paths. Refer-
ence 10 presents further details of the engine design.

Instrumentation

The instrumentation configuration for data reported in this text is shown in figure 1.
Engine inlet temperature was measured upstream of the bellmouth at station 1. Total
engine airflow was based on the temperature measured at station 1.0 and a pressure
survey at station 1.2. The majority of the instrumentation divided the compression
system into fan tip (stations 2 to 9), fan hub (2 to 22), low pressure compressor (22 to
24), and high pressure compressor (24 to 3). The remaining probes were placed to
evaluate overall engine performance (stations 5, 7, 8, 11, and 12).

Pressure, temperature, speeds, and other reported parameters were recorded on
the Lewis Central Automatic Digital Data Encoder (CADDE) (ref. 11).



Engine Installation

The engine installation in the altitude test chamber is shown in figure 2. The in-
stallation was of a conventional direct-connect type, with the inlet bellmouth located in
a plenum upstream of the engine chamber. The plenum was isolated from the test cham-
ber by the front bulkhead (fig. 2(b)). Conditioned air was supplied to the inlet plenum
to yield the desired engine inlet Reynolds number index and temperature. The air con-
sumed by the engine was discharged through the exhaust nozzles and, with any test cell
cooling air, passed into the exhaust collector (fig. 2(c)). The test chamber altitude
pressure was controlled by valves downstream of the installation.

Test Procedure

During these tests, a constant ram pressure ratio PT 2/pALT of 1< 525' corre"
spending to a simulated Mach number MQ of 0. 8, was maintained. (Symbols are de-
fined in appendix A.) Testing was conducted at engine inlet total temperatures of 289
and 244 K (520° and 440° R). At a given inlet temperature, inlet pressure was adjusted
to achieve the desired engine inlet Reynolds number index while altitude pressure was
adjusted to maintain ram pressure ratio.

Operating line data were obtained at the following combinations of inlet temperature
TT 2 and Reynolds number index RNI2: TT 2 = 289 K, RNIg =0 .75 , 0.50, 0.25;
TT' 2 = 244 K, RNI2 = 0. 50, 0.25, 0.12. The possibility of an effect of inlet tempera-
ture was thus evaluated at RNI0 values of 0.50 and 0.25. The 244 K T™ 0 also per-
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mitted acquisition of limited data at 0.12 RNL, and of the higher corrected speed data
for 0. 50 and 0. 25 RNI2 without encountering turbine temperature limits.

RESULTS AND DISCUSSION

The first section of results presents the engine inlet Reynolds number index and
temperature effects on the fan, low pressure compressor, and high pressure compres-
sor performance. These results are followed by the engine inlet Reynolds number index
and temperature effects on some of the engine performance parameters. All data pre-
sented were referred to the highest power setting tested at the 0. 75 RNI2 condition.

Component Performance

Fan performance. - The fan tip and fan hub performance maps are presented in



figure 3. The open symbols represent the 289 K TT 2 data and the shaded symbols
represent the 244 K TT 2 data.

The data of figures 3(a) and (b) show that the fan tip and hub pressure ratios were
independent of RNLj and TT 2 at a given corrected speed until RNI2 reached 0.12.
At 0.12 RNL,, the fan tip pressure ratio fell 1.5 percent below the higher RNI2 data at
95 percent reference fan speed.

The data of figures 3(c) and (d) show that for a given fan tip or fan hub pressure
ratio, corrected airflow decreased as RNL, decreased. The data indicate no signi-
ficant TT 2 effect at 0. 50 RNI2; while at 0. 25 RNI2, the 244 K data was 1 to 1. 5 per-
cent lower in airflow than the 289 K data. The same trend in corrected airflow occurred
with RNI2 and TT 2 at a given corrected speed (fig. 3(e)).

Fan tip and fan hub efficiencies (figs. 3(f) and (g)) generally decreased with decreas-
ing RNI2. Fan hub efficiency also decreased with decreasing TT 2- The majority of
the data indicated that near 103 percent of the reference corrected speed, all but the
0.12 RNI2 fan tip efficiency data approached a value near 100 percent of the reference
fan tip efficiency. The lower fan tip efficiency at 0.12 RNL, accompanied the drop in
pressure ratio previously noted. The fan hub efficiency data showed a merging at higher
corrected speeds, but the trend was not quite as strong in this case. Because of the
general drop in efficiency as RNI2 and TT 2 were lowered, it is to be expected that
more turbine work would be necessary to maintain a given speed. This will be dis-
played later in the text.

Low pressure axial flow compressor performance. - Low pressure compressor
LPC performance is presented in figure 4. The data of figure 4(a), the LPC pressure
ratio-corrected speed relationship, showed no dependence on either RNL, or T™ <,.
In figures 4(b) and (c), corrected airflow dropped as RNI2 decreased either at a given
pressure ratio or corrected speed, as previously noted in the fan. There was no effect
of TT 2 on LPC airflow.

The major variation of LPC efficiency, shown in figure 4(d), occurred between
0. 50 RNI2 and 0. 25 RNI2, the lower RNI2 data falling 2 to 2. 5 percent below the
higher RNL, data up to 100 percent reference corrected speed. Near 105 percent
speed, the efficiencies were equal.

High pressure centrifugal compressor performance. - The high pressure compres-
sor HPC performance is presented in figure 5. Once again, the pressure ratio-
corrected speed relationship (fig. 5(a)) was independent of RNL^ and TT 2- Decreased
RNL, at a given pressure ratio or corrected speed resulted in decreased corrected
airflow (figs. 5(b) and (c)). No effect of TT 2 on corrected airflow was noted.

HPC efficiency plotted against corrected speed (fig. 5(d)) showed that lower RNI2

yielded lower efficiency above 97 percent reference corrected speed for the data avail-
able. Instrumentation problems prevented determination of HPC efficiency at



0.12 RNIg and at 0.25 RNI2 with a TT 2 of 289 K. There was no effect of TT 2 on
efficiency.

The presentation of inlet Reynolds number index and temperature effects on the in-
dividual compression system components has indicated primarily a drop in both cor-
rected airflow and efficiency as RNI« was reduced. Only the fan was affected by TT 2

variation, these secondary effects being a further drop in total corrected airflow and an
additional decrease in fan hub efficiency as Trp 2 decreased.

All components but the fan tip showed pressure ratio independent of RNLj. At
0.12 RNL,, the fan tip pressure ratio fell below the higher RNL, data.

Effects on Engine Performance

The low rotor speed corrected to engine inlet temperature was chosen as the inde-
pendent variable against which engine performance parameters would be plotted. This
choice was made because the low rotor is related to both fan and core performance.
Data comparisons will be made at a corrected low rotor speed of 95 percent of reference,
unless it is noted otherwise. A tabulation is made of the comparison data in table I.

Compression system overall performance. - Figure 6 presents the overall perform-
ance of the compression system. Since low rotor speed and fan speed are related by a
constant, normalized corrected fan speed is equal to normalized corrected low rotor
speed. Therefore, figure 6(a) is identical to figure 3(e). Figure 6(a) is shown to com-
plete the presentation. The figures show that decreasing RNI2 from 0.75 to 0. 50 at
289 K TT 2 decreased airflow by 0. 5 percent. A further decrease in RNL, to 0.25
yielded a further drop in airflow of 0. 7 percent. TT 2 had essentially no effect at
0. 50 RNI2, while at 0. 25 RNLj, the 244 K data was 1. 5 percent lower in airflow than
the 289 K data. Part of this change in airflow may be due to changes in the engine match
with TT 2 changes.

The core compression system overall pressure ratio P^ 3/P-j- 2 (fig- 6(b)) was
essentially independent of both RNI2 and TT 2 throughout the range of corrected low
rotor speed tested. However, with fan and compressor efficiencies dependent on engine
inlet conditions, figure 6(c) shows the resulting effect on core compression system total
temperature ratio. As RNI2 was decreased from 0. 75 to 0. 50, TT 3/TT 2 increased
0. 5 percent. Decreasing RNI2 further to 0. 25 resulted in an additional rise in tem-
perature ratio of 1.0 percent at 289 K TT 2-

 At 244 K TT 2' the increase was 2-2 Per~
cent between 0. 25 and 0.12 RNI2- It was also noted that the 244 K TT 2 data at 0. 50
and 0. 25 RNL, were 1.2 percent and 0.9 percent higher in TT 3/TT 2 than the re-
spective data at 289 K TT 2-

Energy requirements. - Figure 7 shows the effects of RNI2 and TT 2 on the
energy requirements within the engine. The lower compression efficiencies that



resulted with decreased RNI2 should require increased turbine work to operate the
engine at the same corrected low rotor speed. Energy input to the engine, as reflected
in corrected fuel flow (fig. 7(a)), increased 3.2 percent as RNI2 decreased from 0.75
to 0. 50 and interturbine temperature ratio (fig. 7(b)), TT 5/TT 2, increased 1. 6 per-
cent, indicating an increased turbine energy level was required to maintain 95 percent
corrected low rotor speed.

Corrected fuel flow and interturbine temperature ratio also showed the effects of
inlet temperature variation. Corrected fuel flow decreased 3. 2 percent at 0. 5 RNI«
and 6. 2 percent at 0. 25 RNI2 as TT 2 was decreased from 289 to 244 K. Interturbine
temperature ratio increased 1.2 percent and 3 percent for the same TT 2 changes.
Aside from possible engine match changes previously mentioned, specific heat and
specific heat ratio variations with temperature through the engine are believed to be a
contributing factor to these effects. The parameters used to refer speeds, fuel flows,
airflows, and temperatures to standard conditions are derived from dimensional analy-
sis and assume negligible specific heat effects. By basing correction parameters on
dynamic similarity, specific heat variations can be accounted for (refs. 12 and 13). In
a report on this engine (ref. 14) the authors suggested modified correction parameters,
both theoretically and empirically determined. These parameters, while offering a
better correlation of data at the same RNI2 but different TT 2 values, did not bring
about total agreement. With the limited inlet temperature variation of this test, new
modified correction parameters were not evaluated. It was only determined that there
was an effect of inlet temperature on some parameters.

Overall cycle performance. - Figure 8 presents the effects of engine inlet condi-
tions on overall cycle pressure and temperature ratios. In figures 8(a) and (b) fan duct
total pressure ratio PT jj/P-p 2 and engine pressure ratio PT 7/PT 2 are seen to
be independent of RNL, and TT 2. The fan duct total temperature ratio (fig. 8(c)) was
essentially independent of RNLj and TT ,,. Only the 0.12 RNL, data appeared to
differ, being at most 0. 5 percent higher than the rest of the data. The core engine total
temperature ratio (fig. 8(d)) showed the result of operating at a constant corrected low
rotor speed, and therefore constant cycle pressure ratio, while decreasing RNLj. The
decreasing component efficiencies and increasing heat addition, resulting in entropy
increases, yielded a higher final enthalpy state. Thus, as RNL, decreased from 0.75
to 0.50, turbine exit temperature ratio TT ij/Trr, 2 rose 1.7 percent. Decreasing
RNI2 further to 0.25 yielded an additional TT 7/TT 2 rise of 4.3 percent. The lower
temperature data showed similar trends.

The only parameter in figure 8 showing an effect of TT 2 was TT 7/TT 2- De-
creasing TT 2 from 289 to 244 K at 0.50 RNI2 yielded negligible change; while at
0.25 RNI2, the ratio increased 1.9 percent.

Core and fan stream matching. - The match between core and fan streams is eval-
uated using bypass ratio (BPR) and also the speed match. Bypass ratio is the ratio of



the airflow bypassed through the fan duct to the airflow entering the engine core. The

core inlet airflow was determined from core exhaust gas flow, fuel flow, and cooling

flows. The core exhaust gas flow was based on measurements of exhaust gas condition

and nozzle model calibration test results. The model tests were performed by the en-

gine manufacturer and verified during the altitude-performance testing of reference 14.

Fan duct airflow was calculated as total engine airflow minus core inlet airflow.

Nozzle total-to-static pressure ratios are the forcing functions of core and fan noz-

zle corrected flows. Since the tests were performed at a constant PT 2/PALT' tne

variation of exhaust nozzle total-to-static pressure ratio was implied in figures 8(a)

and (b), the cycle total pressure ratios, for example,

PALT

There is, however, another effect not associated with engine inlet conditions revealed

in figure 9(a). Here it is seen that, over the engine operating range, the fan nozzle exit

external static pressure agrees with ambient pressure. The core nozzle exit external

static pressure, however, is seen to increase with power setting due to the effect of the

fan flow field on the core stream. The resulting nozzle total-to-static pressure ratios

are shown in figures 9(b) and (c). All nozzle performance figures showed no dependence

on engine inlet conditions.

At the test ram pressure ratio of 1.525, the exhaust nozzles were unchoked over

much of the engine operating range. The choked flow regions indicated in the figures

were determined from the nozzle calibration tests. Although the fan nozzle operated at

a higher pressure ratio than the core nozzle at the lower speeds and choked before the

core, figure 9(c) shows that the core nozzle pressure ratio increased approximately

twice as fast as that of the fan. The core nozzle choked soon after the fan. The result-

ing corrected core nozzle gas flow, presented in figure 9(d), is independent of engine

inlet conditions.

Bypass ratio, as seen in figure 10(a), can be expressed as

WA
BPR =

WA22

or, by rearranging as in appendix B, BPR can be represented solely in terms of param-

eters presented in previous figures as



BPR =

K

(EPR)

- 1

Bypass ratio increased 1.3 percent as RNI2 decreased from 0.75 to 0. 50 and 2. 1 per-
cent as RNI2 decreased from 0.50 to 0.25. Examination of the behavior of the various
parameters in the second representation for BPR revealed that only TT 7/TT 2

WF/( t/07 6«>) were affected in such a way by decreasing RNL, so as to yield an in-
crease in BPR. Examining the relative magnitudes of the effect of these parameters on
BPR showed that the BPR increase was due mainly to increased TT 7/TT 2-

The speed match of figure 10(b) shows no dependence on RNI2 at 289 K TT 2- At
244 K TT 2, however, effects of RNI2 were seen. The 244 K TT 2 data at 0. 50 RNI2

was 1. 3 percent higher in corrected high rotor speed than the 289 K data. The cold
0. 25 RNI2 data fell 0. 5 percent below the cold 0. 50 RNI2 data, while the 0. 12 RNI2

data was 0. 9 percent above that at 0. 50 RNL,. This reversal is believed to be genuine
as data recorded at a later date repeated the trend.

It is believed that the speed match trends were due to turbine performance and
matching changes. Sufficient turbine instrumentation was not available to verify this,
however.

SUMMARY OF RESULTS

An investigation was undertaken to determine the effects of engine inlet Reynolds
number and temperature on the fan, compressor, and overall engine performance of a
TFE731-2 turbofan engine. Inlet Reynolds number indices of 0. 75, 0. 50, 0.25, and
0.12 were examined at inlet temperatures of 289 and 244 K (520° and 440° R), at a ram
pressure ratio of 1.525. The summarized results are as follows:

1. A reduction of inlet Reynolds number index RNI2 resulted in decreased fan and
compressor corrected airflow and efficiency at a given corrected speed.

2. Fan and compressor total pressure ratios were independent of RNL, to values
of 0.25; and at 0.12 RNI2, only fan tip pressure ratio suffered a loss.

3. Fan airflow decreased with decreasing inlet total temperature TT 2, the effect
being more noticeable at 0. 25 RNL,.



4. Fan hub efficiency decreased with decreasing TT 2-
5. The compressor operating lines were unaffected by T™ 0.1,6
6. The overall fan/compressor total pressure ratio, engine pressure ratio, and

fan duct total pressure ratio were essentially independent of RNL, and TT 2 at a
given corrected low rotor speed.

7. Overall core compression system temperature ratio, interturbine temperature
ratio, turbine exit temperature ratio, and corrected fuel flow increased as RNI2 de-
creased at a fixed corrected low rotor speed.

8. Decreased engine inlet temperature resulted in increased core compression
system temperature ratio, interturbine temperature ratio and turbine exit temperature
ratio, and a decreased corrected fuel flow at a given corrected low rotor speed.

9. Bypass ratio increased as RNI2 decreased but was independent of TT 2-
10. Speed match was independent of RNI2 at 289 K TT 2- At 244 K TT 2, de-

creasing RNL> showed an initial drop in corrected high rotor speed, followed by a re-
versal and increase in high rotor speed as RNI2 continued to drop.

Lewis Research Center,
National Aeronautics and Space Administration,

and
U. S. Army Air Mobility R&D Laboratory,

Cleveland, Ohio, November 19, 1976,
505-05.



APPENDIX A

SYMBOLS

BPR bypass ratio (e.g., ratio of fan duct airflow at fan tip discharge to core engine
airflow at fan hub discharge)

EPR engine pressure ratio (e.g., ratio of turbine exit total pressure to engine inlet
total pressure)

MQ simulated Mach number

NF fan speed, 0. 556 NL, rpm

NH high rotor speed, rpm

NL low rotor speed, rpm
o

PS static pressure, N/cm
n

PT total pressure, N/cm

RNI Reynolds number index, 6/(<p\/0)

TT total temperature, K

WA air flow rate, kg/sec

WF fuel flow rate, kg/hr

WG gas flow rate, kg/hr

6 ratio of total pressure to absolute pressure of NASA standard sea-level condi-
tions

77 adiabatic efficiency

9 ratio of total temperature to absolute temperature of NASA standard sea-level
conditions

tp ratio of viscosity to viscosity of NASA standard sea-level conditions

Subscripts:

ALT simulated altitude

FH fan hub

FT fan tip

HPC high pressure compressor

LPC low pressure compressor

ref reference condition

10



2 fan inlet

3 HPC discharge

5 interurbine

7 turbine discharge

8 core nozzle discharge

9 fan tip discharge

11 fan nozzle inlet

12 fan nozzle discharge

22 fan hub exit and LPC inlet

24 LPC discharge and HPC inlet

11



APPENDIX B

BYPASS RATIO DEPENDENCY

While bypass ratio BPR was defined for this report as WAg/WA22, its calculation
was somewhat more involved. The calculations are detailed below:

WAf
BPR =

WA22

WAg = WA2 - WA22

where WA2 was based on an airflow survey at station 1. 2 and WA22 was based on
core exhaust nozzle calibration information, fuel flow, and bleed flows.

The dependence of BPR on other parameters reported herein may be further de-
veloped as follows:

WAQ WA9 - WA99 WA9
BPR = 2- = £ ££ = £_ - 1

WA22 WA,22 WA22

1 + BPR =
WA,

WA22

- K(WA7) = K(WG? - WF)

where K is an empirically determined constant accounting for bleed flows. Thus,

wA

1 + BPR =
WA.

WA22
K -I—± (WG7 - WF) K

12



1 + BPR =

(EPR)

K WF
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TABLE I. - CHANGES IN ENGINE PERFORMANCE

PARAMETERS FROM VALUE AT RNIg = 0. 75

AND NL/ f/02~ = 95 PERCENT (NL/ f^)ref

[+ indicates increases; - indicates decreases.]

Parameter

WA2 \^/62

TT,3/TT,2
WF/(V^ 62)

TT,5/TT,2
TT, 11/TT,2
TT, 7/TT, 2
BPR

NH/ Y/e^

Inlet Reynolds number index, RNLj

0.50 0.25 0.12

Inlet total temperature, TT 2, K

289

-0.5

+.5

+3.2

+1.6

0

+1.7

+1.3

0

244

-0.5

+1.7

0

+2.8

0

+1.7

+1.3

+1.3

289

-1.2

+ 1.5

+6.2

+4.7

0

+6.0

+3.4

0

244

-2.7

+2.4

0

+7.7

0

+7.9

+3.4

+.8

244

-5.2

+4.6

+6.2

+ 15.7

+.5

+ 18.3

+5.5

+2.2

15



LPC-, HPC-,( ,
Fan reduction gears-x Fan-, \ \ rHPT

Combustor

/^LPT ^Fan nozzle

Core nozzle

12
(a) Station locations and flow/path.

O Total pressure
O Static pressure
+ Total temperature:

Station 1.0
Bellmouth inlet

Station L 2
Airflow measurement

Station 2'
Fan inlet

Station 9.0
Fan tip discharge

Station 22
Fan hub exit and LPC inlet

Station 24
LPC discharge and HPC inlet

Station 3.0
HPC discharge

Station 5.0
Interturbine

Station 7
Turbine discharge

Station 8.0
Core nozzle discharge

Station 11.0
Fan nozzle inlet

Station iao
Fan nozzle discharge

(b) Individual station layouts (looking upstream).

Figure 1. - Schematic of TFFJ31-2 engine and instHrmentation.
CD-12065-07
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C-71-3593

(a) Installation in altitude facility.

Cooling air torus

•Front bulkhead

(b) Front bulkhead and inlet ducting.

Figure 2. - Engine installation.
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(c) Fan nozzle pressure ratio plotted against corrected low rotor speed.

Figure 9. - Continued.
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Figure 9. - Concluded.
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(a) Bypass ratio plotted against corrected low rotor speed.

Figure 10. - Flow split at simulated Mach number MQ = 0.8.
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Figure 10. - Concluded.
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